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Introduction
The principle of data assimilation methods consists in finding a compromise be-
tween background predictions and instrumental observations where the associated
weights are provided by prior error covariance matrices. The background error co-
variance matrix B and the observation error covariance matrix R are key elements
in data assimilation algorithms. Advanced knowledge of these matrices could be
helpful to improve the output error covariance recognition as well as the accuracy
of state estimation.

Fig. 1: Data assimilation principle
Continuous attention and effort have been dedicated to this topic, especially for the
computation of matrix B. The Desroziers iterative method [2] is very well known and
widely applied. This method consists in adjusting the ratio between matrices B and
R, supposing the error correlations are well-known. Other existing methods, such
as the NMC method [3] or ensemble methods, are more appropriate in a successive
data assimilation procedure but not for our approach where we are especially in-
terested in short term predictions and static reconstructions. In this research, we
have a dual objective:
• Better identification of a priori and a posteriori error correlation based on a good

knowledge of observation error covariance
• Reduction of prediction/reconstruction error in short term forecasts or static re-

construction

Novel iterative Methods relying on invariant observa-
tions
In industrial applications, the model error of reconstruction problems is often inte-
grated as a part of the background error, leading to a less precise knowledge about
the background covariance matrix B relative to the observation covariance matrix
R. In addition, [4] points out that an overestimation of matrix B could bring an
important risk on a posteriori error covariance estimation. In order to balance the
mis-specification of background state (both xb and its covariance B), the idea of
repeating assimilation loops using well-known observation matrix R comes nat-
urally. However, the independence between the background errors and the ones
of observations stands for one of the most important hypotheses in classical data
assimilation. Therefore, between updated state and observations, the redundancy
created by the iterative process itself must be properly estimated and taken into
account.

Algorithm: State & Covariance updating
Input: observation data y
Initially guessed matrix: B
Initial state: xb
for number of updating steps do

Optimization procedure with current xb and B
Estimating the covariance (output state, invariant obervations)
Updating of covariance matrices and background state

end
Output: structurally improved error covariance matrix and modified state

The optimization step is carried out using either CUTE or PUB algorithms, devel-
oped in this work [1].

CUTE (Covariance Updating iTerativE) method

Fig. 2: CUTE algorithm

The covariance between updated states and invariant observations are estimated
using BLUE-type formulations and then injected into the estimation of output error
covariance in the next loop, as shown by dashed red lines in Fig. 2.

PUB (Partially Updating BLUE) method
The principle of this method is to merge the background state and the observations
in a broader space of larger dimension, with a partial updating only on the back-
ground part of the space. As a consequence, the updated background-observation
redundancy is not only taken into account in the covariance updating but also in
the optimization calculation. The covariance updating is based on BLUE formula
in the broader space.

Twin experiments
We consider a standard 2D shallow-water fluid mechanics system for evaluating
the performance of data assimilation algorithms. A cylinder of water, localized in
the center of the domain, is released at t = 0. The wave-propagation is numerically
simulated.

Fig. 3: Shallow water model

The goal of twin experiments is to reconstruct the velocity fields, in a spatial sub-
domain, based on artificially noised background states and observations.

Reconstruction at a fixed time
We show the prior and the posterior state error correlation functions (correlation
value φ against distance r) as well as the evolution of assimilation error against the
number of iterations in CUTE or PUB methods.
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Fig. 4: [left] Original assumed (green) and exact (black) background error
correlation; [right] Evolution of reconstruction errors of proposed methods
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Fig. 5: Estimated compared to exact a posteriori error correlation

Conclusions and Perspectives
• Under our assumptions, both CUTE and PUB show strong competitive perfor-

mance in terms of improving error correlation recognition and assimilation accu-
racy

• For successive reconstruction in a data assimilation chain (not shown in this
poster), improved results are obtained by applying CUTE or PUB method only
once at the beginning of the process

• These methods are being tested for a rainflow hydrological problem
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